Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Carriage prevalence of extended-spectrum β-lactamase producing enterobacterales in outpatients attending community health centers in Blantyre, Malawi

Antimicrobial resistance due to extended-spectrum β-lactamase (ESBL) production by Enterobacterales is a global health problem contributing to increased morbidity and mortality, particu-larly in resource-constrained countries. We aimed to determine the prevalence of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) in community patients in Blantyre, Malawi.

Research

Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030.

Research

Mapping tuberculosis prevalence in Ethiopia using geospatial meta-analysis\

Reliable and detailed data on the prevalence of tuberculosis (TB) with sub-national estimates are scarce in Ethiopia. We address this knowledge gap by spatially predicting the national, sub-national and local prevalence of TB, and identifying drivers of TB prevalence across the country.

Research

Childhood-onset type 1 diabetes in Western Australia: An update on incidence and temporal trends from 2001 to 2022

To determine the incidence and incidence trends over 2001-2022 of childhood-onset type 1 diabetes (T1D) in Western Australia and assess the impact of the COVID-19 pandemic.

Research

Malaria Atlas Project (MAP)

The Malaria Atlas Project (MAP) aims to disseminate free, accurate and up-to-date geographical information on malaria and associated topics. Our mission is to generate new and innovative methods to map malaria, to produce a comprehensive range of maps and estimates that will support effective planning of malaria

Research

Malaria components of the Global Burden of Disease study

Adam Dan Francesca Susan Saddler Weiss Sanna Rumisha PhD PhD Dr PhD (Biostatistics) Research Officer Honorary Research Fellow Research Officer

Research

A malaria seasonality dataset for sub-Saharan Africa

Malaria imposes a significant global health burden and remains a major cause of child mortality in sub-Saharan Africa. In many countries, malaria transmission varies seasonally. The use of seasonally-deployed interventions is expanding, and the effectiveness of these control measures hinges on quantitative and geographically-specific characterisations of malaria seasonality.

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

Statistical modelling under differential privacy constraints: a case study in fine-scale geographical analysis with Australian Bureau of Statistics TableBuilder data

Consistent with the principles of differential privacy protection, the Australian Bureau of Statistics artificially perturbs all count data from the Australian Census prior to its release to researchers through the TableBuilder platform. This perturbation involves the addition of random noise to every non-zero cell count followed by the suppression of small values to zero.

Research

Challenges in the case-based surveillance of infectious diseases

To effectively inform infectious disease control strategies, accurate knowledge of the pathogen's transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance.