Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis

Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control.

Research

Carriage prevalence of extended-spectrum β-lactamase producing enterobacterales in outpatients attending community health centers in Blantyre, Malawi

Antimicrobial resistance due to extended-spectrum β-lactamase (ESBL) production by Enterobacterales is a global health problem contributing to increased morbidity and mortality, particu-larly in resource-constrained countries. We aimed to determine the prevalence of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) in community patients in Blantyre, Malawi.

Research

Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030.

Research

The COVID-19 pandemic and healthcare systems in Africa: A scoping review of preparedness, impact and response

The COVID-19 pandemic has overwhelmed health systems in both developed and developing nations alike. Africa has one of the weakest health systems globally, but there is limited evidence on how the region is prepared for, impacted by and responded to the pandemic.

Research

Malaria Atlas Project (MAP)

The Malaria Atlas Project (MAP) aims to disseminate free, accurate and up-to-date geographical information on malaria and associated topics. Our mission is to generate new and innovative methods to map malaria, to produce a comprehensive range of maps and estimates that will support effective planning of malaria

Research

Malaria components of the Global Burden of Disease study

Adam Dan Francesca Susan Saddler Weiss Sanna Rumisha PhD PhD Dr PhD (Biostatistics) Research Officer Honorary Research Fellow Research Officer

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

Challenges in the case-based surveillance of infectious diseases

To effectively inform infectious disease control strategies, accurate knowledge of the pathogen's transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance.

Research

What Heterogeneities in Individual-level Mobility Are Lost During Aggregation? Leveraging GPS Logger Data to Understand Fine-scale and Aggregated Patterns of Mobility

Human movement drives spatial transmission patterns of infectious diseases. Population-level mobility patterns are often quantified using aggregated data sets, such as census migration surveys or mobile phone data. These data are often unable to quantify individual-level travel patterns and lack the information needed to discern how mobility varies by demographic groups. Individual-level datasets can capture additional, more precise, aspects of mobility that may impact disease risk or transmission patterns and determine how mobility differs across cohorts; however, these data are rare, particularly in locations such as sub-Saharan Africa.

Research

WALLABY Pilot Survey: H i gas kinematics of galaxy pairs in cluster environment

We examine the H i gas kinematics of galaxy pairs in two clusters and a group using Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pilot survey observations. We compare the H i properties of galaxy pair candidates in the Hydra I and Norma clusters, and the NGC 4636 group, with those of non-paired control galaxies selected in the same fields.