Skip to content
The Kids Research Institute Australia logo
Donate

Search

Prebiotic Supplementation During Pregnancy Modifies the Gut Microbiota and Increases Metabolites in Amniotic Fluid, Driving a Tolerogenic Environment In Utero

The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits.

Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OM-85

Incomplete maturation of immune regulatory functions at birth is antecedent to the heightened risk for severe respiratory infections during infancy. Our forerunner animal model studies demonstrated that maternal treatment with the microbial-derived immune training agent OM-85 during pregnancy promotes accelerated postnatal maturation of mechanisms that regulate inflammatory processes in the offspring airways.

OMIP 076: High-dimensional immunophenotyping of murine T-cell, B-cell, and antibody secreting cell subsets

There is now considerable evidence demonstrating that both prenatal and postnatal exposure to particular classes of microbial stimuli can provide beneficial signals during early life immune development, resulting in the protection against future inflammatory disease.

Transplacental Innate Immune Training via Maternal Microbial Exposure: Role of XBP1-ERN1 Axis in Dendritic Cell Precursor Programming

We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis.

Oestrogen amplifies pre-existing atopy-associated Th2 bias in an experimental asthma model

The role of oestrogen in experimental atopic asthma, and guide future research on sex-related variations in atopic asthma susceptibility/intensity

A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood

Neonatal dendritic cells generated form CD34+ cord blood progenitors have a higher inflammatory potential when exposed to viral than bacterial related stimuli

Tumor necrosis factor α induces α1B-adrenergic receptor expression in keratinocytes

Our results suggest that inflammatory cytokines released during injury stimulate α1-AR expression in keratinocytes

Immunoinflammatory responses to febrile lower respiratory infections in infants display uniquely complex/intense transcriptomic profiles

the association between infant LRTI and risk for persistent wheeze/asthma in this cohort is generally stronger for fLRTIs than for other infection categories

Quantification of Serum Ovalbumin-specific Immunoglobulin E Titre via in vivo Passive Cutaneous Anaphylaxis Assay

We describe herein a highly reproducible in vivo passive cutaneous anaphylaxis assay using Sprague Dawley rats for the quantification of ovalbumin-specific IgE

Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation

These data provide proof of concept supporting the rationale for developing transplacental immune reprogramming approaches for primary disease prevention