Search
VEGFR-3 signaling plays a central role in lymphatic biology, both in the development of the lymphatic network during embryogenesis as well as in...
Feilman Fellow; Head, Precision Health Research and Head, Translational Intelligence
Whole genome sequencing offers significant potential to improve the diagnosis and treatment of rare diseases by enabling the identification of thousands of rare, potentially pathogenic variants. Existing variant prioritisation tools can be complemented by approaches that incorporate phenotype specificity and provide contextual biological information, such as tissue or cell-type specificity.
A robust understanding of the cellular mechanisms underlying diseases sets the foundation for the effective design of drugs and other interventions. The wealth of existing single-cell atlases offers the opportunity to uncover high-resolution information on expression patterns across various cell types and
People living with rare diseases (PLWRD) still face huge unmet needs, in part due to the fact that care systems are not sufficiently aligned with their needs and healthcare workforce (HWF) along their care pathways lacks competencies to efficiently tackle rare disease-specific challenges. Level of rare disease knowledge and awareness among the current and future HWF is insufficient.
Our goal was to identify genetic risk factors for severe otitis media (OM) in Aboriginal Australians.
Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.
There are an estimated > 400 million people living with a rare disease globally, with genetic variants the cause of approximately 80% of cases. Next Generation Sequencing (NGS) rapidly identifies genetic variants however they are often of unknown significance.
The immunological changes underpinning acquisition of remission (also called sustained unresponsiveness) following food immunotherapy remain poorly defined. Limited access to effective therapies and biosamples from treatment responders has prevented progress. Probiotic peanut oral immunotherapy is highly effective at inducing remission, providing an opportunity to investigate immune changes.
To define clinical common data elements (CDEs) and a mandatory minimum data set (MDS) for genomic studies of cerebral palsy (CP). Method: Candidate data elements were collated following a review of the literature and existing CDEs.