Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

What Heterogeneities in Individual-level Mobility Are Lost During Aggregation? Leveraging GPS Logger Data to Understand Fine-scale and Aggregated Patterns of Mobility

Human movement drives spatial transmission patterns of infectious diseases. Population-level mobility patterns are often quantified using aggregated data sets, such as census migration surveys or mobile phone data. These data are often unable to quantify individual-level travel patterns and lack the information needed to discern how mobility varies by demographic groups. Individual-level datasets can capture additional, more precise, aspects of mobility that may impact disease risk or transmission patterns and determine how mobility differs across cohorts; however, these data are rare, particularly in locations such as sub-Saharan Africa.

Research

Projected health impact of post-discharge malaria chemoprevention among children with severe malarial anaemia in Africa

Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) with dihydroartemisinin-piperaquine reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0-5-year old children after hospitalised SMA.

Research

Comparative assessment of the human and animal health surveillance systems in Tanzania: Opportunities for an integrated one health surveillance platform

Globally, there have been calls for an integrated zoonotic disease surveillance system. This study aimed to assess human and animal health surveillance systems to identify opportunities for One Health surveillance platform in Tanzania.

Research

Geospatial modelling for malaria risk stratification and intervention targeting for low-endemic countries

Ewan Punam Susan Tasmin Cameron Amratia Rumisha Symons BSc PhD PhD PhD (Biostatistics) Director of Malaria Risk Stratification Honorary Research

Research

A Maximum Entropy Model of the Distribution of Dengue Serotype in Mexico

Pathogen strain diversity is an important driver of the trajectory of epidemics. The role of bioclimatic factors on the spatial distribution of dengue virus serotypes has, however, not been previously studied. Hence, we developed municipality-scale environmental suitability maps for the four dengue virus serotypes using maximum entropy modeling.

Research

Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventions

Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach.

Research

Modelling temperature-driven changes in species associations across freshwater communities

Due to global climate change–induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species’ distributions.

Research

Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria

Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator.

Research

The Centres for Disease Control light trap and the human decoy trap compared to the human landing catch for measuring Anopheles biting in rural Tanzania

Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives.

Research

Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in Tanzania

In recent years there have been reports of viral haemorrhagic fever (VHF) epidemics in sub-Saharan Africa where malaria is endemic. VHF and malaria have overlapping clinical presentations making differential diagnosis a challenge.