Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Statistical modeling based on structured surveys of Australian native possum excreta harboring Mycobacterium ulcerans predicts Buruli ulcer occurrence in humans

Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with Mycobacterium ulcerans. BU is commonly reported across rural regions of Central and West Africa but has been increasing dramatically in temperate southeast Australia around the major metropolitan city of Melbourne, with most disease transmission occurring in the summer months.

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

Challenges in the case-based surveillance of infectious diseases

To effectively inform infectious disease control strategies, accurate knowledge of the pathogen's transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance.

Research

Geospatial modelling for malaria risk stratification and intervention targeting for low-endemic countries

Ewan Punam Susan Tasmin Cameron Amratia Rumisha Symons BSc PhD PhD PhD (Biostatistics) Director of Malaria Risk Stratification Honorary Research

Research

Malaria treatment for prevention: a modelling study of the impact of routine case management on malaria prevalence and burden

Testing and treating symptomatic malaria cases is crucial for case management, but it may also prevent future illness by reducing mean infection duration. Measuring the impact of effective treatment on burden and transmission via field studies or routine surveillance systems is difficult and potentially unethical. This project uses mathematical modeling to explore how increasing treatment of symptomatic cases impacts malaria prevalence and incidence. 

Research

Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections

Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures.

Research

Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania

This study was conducted to determine the seroprevalence and risk factors of chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses in Tanzania.

Research

WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395

We present the Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pre-pilot observations of two 'dark' H i sources (with H i masses of a few times 108 {M}_\odot and no known stellar counterpart) that reside within 363 kpc of NGC 1395, the most massive early-type galaxy in the Eridanus group of galaxies.

Research

The Centres for Disease Control light trap and the human decoy trap compared to the human landing catch for measuring Anopheles biting in rural Tanzania

Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives.

Research

Mapping the endemicity and seasonality of clinical malaria for intervention targeting in Haiti using routine case data

Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts.