Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

CRISPR-Cas9-generated PTCHD1 2489T>G stem cells recapitulate patient phenotype when undergoing neural induction

An estimated 3.5%-5.9% of the global population live with rare diseases, and approximately 80% of these diseases have a genetic cause. Rare genetic diseases are difficult to diagnose, with some affected individuals experiencing diagnostic delays of 5-30 years. Next-generation sequencing has improved clinical diagnostic rates to 33%-48%. In a majority of cases, novel variants potentially causing the disease are discovered. 

Citation:
Farley KO, Forbes CA, Shaw NC, Kuzminski E, Ward M, Baynam G, Lassmann T, Fear VS. CRISPR-Cas9-generated PTCHD1 2489T>G stem cells recapitulate patient phenotype when undergoing neural induction. Hum Genet Genom Adv. 2024;5(1)   

Keywords:
CRISPR-Cas9; PTCHD1; disease modeling; homology-directed repair; rare disease; synaptic dysfunction

Abstract:
An estimated 3.5%-5.9% of the global population live with rare diseases, and approximately 80% of these diseases have a genetic cause. Rare genetic diseases are difficult to diagnose, with some affected individuals experiencing diagnostic delays of 5-30 years. Next-generation sequencing has improved clinical diagnostic rates to 33%-48%. In a majority of cases, novel variants potentially causing the disease are discovered.