Keywords:
Machine learning; pharmaceutical science; physicochemical compatibility; systematic review
Abstract:
Our objective was to establish and test a machine learning-based screening process that would be applicable to systematic reviews in pharmaceutical sciences. We used the SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research type) model, a broad search strategy, and a machine learning tool (Research Screener) to identify relevant references related to y-site compatibility of 95 intravenous drugs used in neonatal intensive care settings.