Keywords:
Acute rheumatic fever; Children; GAS; Group a streptococcus; Impetigo; Pharyngitis; Rheumatic heart disease; S. pyogenes; Skin infection; Sore throat; Strep throat
Abstract:
Background: Group A Streptococcal (GAS) infections cause the autoimmune disease acute rheumatic fever (ARF), which can progress to chronic rheumatic heart disease (RHD). Treating pharyngitis caused by GAS with antibiotics is important in preventing ARF. However, it is difficult to distinguish these infections from GAS carriers. There is growing evidence for GAS skin infections as a cause of ARF. This study will identify the incidence of true GAS pharyngitis and serological responses to GAS skin infections. The effectiveness of antibiotics for these conditions will be explored, and modifiable risk factors. Serum antibody titres indicating the upper limits of normal (ULN for ASO/ADB antibodies) will be established alongside carriage rates in asymptomatic children.
Methods: This is a prospective disease incidence study, with an associated case-control study. The study population includes 1000 children (5-14 years) from Auckland, New Zealand, 800 of whom have visited their healthcare professional, resulting in a throat or skin swab for GAS, and 200 who are asymptomatic. The conditions of interest are GAS throat swab positive pharyngitis (n = 200); GAS carriage (n = 200); GAS negative throat swab (n = 200); GAS skin infections (n = 200); and asymptomatic controls (n = 200). All participants, except asymptomatic controls, will have acute and convalescent serological testing for ASO/ADB titres (collected < 9 days, and 2-4 weeks following symptom onset, respectively), alongside viral PCR from throat swabs. Asymptomatic controls will have ASO/ADB titres measured in one blood specimen and a throat swab for microbial culture. Caregivers of children will be interviewed using a questionnaire and any GAS isolates identified will be emm typed. The persistence of GAS antibodies will also be investigated.
Discussion: Findings from this study will fill critical gaps in scientific knowledge to better understand the pathophysiology of ARF, improve clinical management of GAS infections, and design more effective ARF prevention programmes. In particular it will measure the incidence of true, serologically confirmed GAS pharyngitis; assess the immune response to GAS skin infections and its role as a cause of ARF; examine the effectiveness of oral antibiotics for treating GAS pharyngitis and carriage; and identify whether risk factors for GAS infections might provide intervention points for reducing ARF.